Symmetric Functional Differential Equations and Neural Networks with Memory
نویسنده
چکیده
We establish an analytic local Hopf bifurcation theorem and a topological global Hopf bifurcation theorem to detect the existence and to describe the spatial-temporal pattern, the asymptotic form and the global continuation of bifurcations of periodic wave solutions for functional differential equations in the presence of symmetry. We apply these general results to obtain the coexistence of multiple large-amplitude wave solutions for the delayed Hopfield-Cohen-Grossberg model of neural networks with a symmetric circulant connection matrix.
منابع مشابه
Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
متن کاملMultiple Hopf bifurcations of symmetric BAM neural network model with delay
A symmetric BAM neural network model with delay is considered. Some results of Hopf bifurcations occurring at the zero equilibrium as the delay increases are exhibited. The existence of multiple periodic solutions is established using a symmetric Hopf bifurcation result of Wu [J. Wu, Symmetric functional differential equations and neural networks with memory, Transactions of the AmericanMathema...
متن کاملAPPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...
متن کاملSolution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملNumerical solution of hybrid fuzzy differential equations by fuzzy neural network
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. We consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. Here neural network is considered as a part of large eld called neural computing or soft computing. The proposed algorithm is illustrated by numerical examples and the result...
متن کامل